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1. 

Non-linear flexural vibration of beams with various boundary conditions such as
hinged–hinged, clamped–clamped and clamped–hinged has been extensively studied using
analytical approaches and numerical methods like FEM. A detailed review has been
brought out by Rosenberg [1] and Satyamoorthy [2]. However, the investigation pertaining
to the cantilever case, which is also of practical interest, is treated sparsely in the literature
[3–9]. All these works are based on continuum approaches wherein either linear mode
shape or truncation in series solution has been introduced for analysing the nonlinear
vibration characteristics of the cantilever beams, except references [7–9]. This, in turn, may
lead to underestimation of energy terms which may affect the actual prediction of
type/degree of non-linearity. Furthermore, there is not much information available in the
literature on how the changes in mode shapes at different amplitudes affect the type/degree
of non-linearity.

The FEM has been established as a powerful numerical tool that provides solutions to
many complicated engineering problems and does not involve an a priori assumption of
the actual nature of the mode shape. Analysis of large amplitude/non-linear vibration
behaviour of cantilever beams by the finite element method appears to be lacking in the
literature. Owing to the difficulty associated with obtaining accurate analytical solution
to the cantilever problems due to the existence of non-linearity in both inertia
and curvature terms, modelling and analysis of such a problem by the FEM become
important. Hence, the study reported here has been carried out using the finite element
approach.

2.   

For an inextensional uniform beam of length L, moment of inertia I and Young’s
modulus E, the longitudinal and transverse displacement u, w are related through the
expression:

u=g
x

0 $61−0dw
dx1

2

7
1/2

−1% dx (1)

where x is measured along the deformed axis of the beam.
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The strain energy, neglecting shear deformation, for ith element due to bending of the
beam is written as

V=EI/2 g
l

0

1
R2 d s (2)

where R is the radius of curvature of the neutral axis of the bent beam and s is measured
along the deformed local axis of the element.

Using the curvature–transverse displacement relationship, equation (2) is rewritten as

V=EI/2 g
l

0 0d
2w

ds21
2

$1−0dw
ds1

2

%−1ds (3)

The kinetic energy for ith element is written as

T=
rA
2 g

l

0 0ẇ1
2

ds+
rA
2 g

l

0 0s
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The dot over the variable represents the derivative with respect to time. l, r and A are
element length, denisty of material and cross-sectional area of the beam. Taking variation
and assuming cubic transverse displacement distribution over the element, the element
stiffness matrices (KL linear, KNL non-linear), mass matrices (ML linear, MNL non-linear)
and non-linear damping matrix (CNL) can be evaluated. After the usual assembly
procedure, the governing equation of equilibrium is given as

[[ML ]+ [MNL ]]{d� }+ [CNL ]{d� }+ [[KL ]+ [KNL]]{d}= {0} (5)

Figure 1. Amplitude-frequency relationship for cantilever beam. Key :—, present (without inplane inertia);
. . . . . , references 8 and 9 (with inplane inertia); ----, present (one term in inplane inertia expression); –-–-–,
present (10 terms in inplane inertia expression); × , reference 6 (with inplane inertia); Q, reference 7 (without
inplane inertia).
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From equation (5), the frequency–amplitude relation for free vibration problem is
evaluated using eigenvalue formulation. To solve the non-linear eigenvalue problem, an
iterative procedure is employed. The iteration starts from a corresponding initial
normalised mode shape obtained from linear analysis, with amplitude scaled up by a
desired value. Based on this initial mode shape, the non-linear matrices are formed and
then an eigenvalue and its corresponding eigenvector are obtained. This eigenvector is then
scaled up again and the iteration continues until the required convergence criteria [10] are
achieved, within the specific tolerance limit of less than 0·1%.

3.    

Based on progressive mesh refinement, 20 elements idealisation is found to be adequate
to model the full beam for the present analysis. The first two non-dimensional frequencies
VL(=v2(rAL4/EI), v is the linear frequency) obtained for linear vibration of the slender
cantilever beam using the present formulation are 3·5160 and 22·0345, which are in
excellent agreement with existing literature.

The solutions for the problem associated with the slender beam considering non-linear
inplane inertia and bending effects are evaluated, and they are shown as the
amplitude-frequency relationship in Figure 1 along with the available results in the
literature. In Figure 1 the present results pertaining to with and without non-linear inplane
inertia (due to inextensibility assumption of beam) are compared with the available results
based on analytical methods coupled with numerical techniques given in references [6–9].
The present results obtained by neglecting the inplane inertia effect match very well with
those of reference [7]. Further, the effect of inplane inertia on frequency considering one
term as well as more term approximation in the inplane inertia expression is also brought
out in Figure 1 and compared with the available results [6, 8, 9]. The analysis in reference
[6] is based on the linear vibration mode whereas updated/actual mode shapes
corresponding to different amplitudes are used in references [7–9] for non-linear vibration
study. It is seen from Figure 1 that, for low vibration amplitudes, the present results with
one term approximation in the non-linear inertia expression agree very well with those of
the available solutions [6, 8, 9]. For large amplitudes, the accuracy in mode shape is
important, as emphasized in references [8, 9]. For the amplitude ratio considered in the
present analysis, converged results (mode shapes and non-linear frequencies) are obtained
by retaining 10 terms in the non-linear inertia expression. It can be observed from Figure
1 that the present results considering the inplane inertia effect are in close agreement with
references [8, 9].

The mode shapes evaluated at different amplitudes are presented in Table 1. It can be
noted from Table 1 that the mode shape obtained pertaining to axial direction at lower
amplitudes is negligible in comparison with the transverse mode shape whereas it is
significant at moderate amplitudes. Hence, the effect of inplane non-linear inertia, in
addition to bending non-linearity, is important in determining the type or strength/degree
of non-linearity of the cantilever beam. Also, a comparison of the present mode shapes
with reference [8] is made and they are in very good agreement.

It can be concluded, in general, that the effect of inplane inertia is to reduce the degree
of non-linearity significantly with an increase in amplitudes of vibration. However, the
inclusion/exclusion of inplane non-linear inertia effect does not change the type of
non-linearity as reported in the case of immovable type of supports. This study is useful
for carrying out similar work considering the relaxation of inextensibility assumption, and
the inclusion of shear deformation and rotary inertia for studying problems like the
dynamic response of flexible multibody systems.
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